Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804336

RESUMO

Ultra-high dose rate radiation has been reported to produce a more favorable toxicity and tumor control profile compared to conventional dose rates that are used for patient treatment. So far, the so-called FLASH effect has been validated for electron, photon and scattered proton beam, but not yet for proton pencil beam scanning (PBS). Because PBS is the state-of-the-art delivery modality for proton therapy and constitutes a wide and growing installation base, we determined the benefit of FLASH PBS on skin and soft tissue toxicity. Using a pencil beam scanning nozzle and the plateau region of a 250 MeV proton beam, a uniform physical dose of 35 Gy (toxicity study) or 15 Gy (tumor control study) was delivered to the right hind leg of mice at various dose rates: Sham, Conventional (Conv, 1 Gy/s), Flash60 (57 Gy/s) and Flash115 (115 Gy/s). Acute radiation effects were quantified by measurements of plasma and skin levels of TGF-ß1 and skin toxicity scoring. Delayed irradiation response was defined by hind leg contracture as a surrogate of irradiation-induced skin and soft tissue toxicity and by plasma levels of 13 different cytokines (CXCL1, CXCL10, Eotaxin, IL1-beta, IL-6, MCP-1, Mip1alpha, TNF-alpha, TNF-beta, VEGF, G-CSF, GM-CSF and TGF- ß1). Plasma and skin levels of TGF-ß1, skin toxicity and leg contracture were all significantly decreased in FLASH compared to Conv groups of mice. FLASH and Conv PBS had similar efficacy with regards to growth control of MOC1 and MOC2 head and neck cancer cells transplanted into syngeneic, immunocompetent mice. These results demonstrate consistent delivery of FLASH PBS radiation from 1 to 115 Gy/s in a clinical gantry. Radiation response following delivery of 35 Gy indicates potential benefits of FLASH versus conventional PBS that are related to skin and soft tissue toxicity.

2.
Clin Endocrinol (Oxf) ; 92(4): 331-337, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31883394

RESUMO

OBJECTIVE: To report a novel mutation in GHR and to characterize a novel mechanism of nonclassical growth hormone insensitivity. CONTEXT: Laron syndrome (LS) is a well-described disorder of growth hormone insensitivity due to mutations in the growth hormone receptor (GHR) that leads to short stature. Biochemically, LS patients classically have elevated levels of growth hormone (GH), but low levels of insulin-like growth factor (IGF)-1, IGF binding protein (IGFBP)-3 and GH binding protein (GHBP). DESIGN: Case presentation with in vitro functional studies. PATIENTS: A young male Caucasian child with short stature was found to have growth hormone insensitivity manifested by elevated levels of GH and GHBP. MEASUREMENTS: Growth hormone stimulation tests revealed baseline GH level of 20.9 µg/L and maximum stimulated GH level of 52.7 µg/L and GHBP level of 4868 pmol/L. GHR gene sequencing revealed a novel heterozygous nonsense mutation (c.800G > A, p.Trp267*) in the transmembrane domain of the receptor. Immunoblot analysis of transfected GHR p.Trp267* in HEK293 revealed inhibition of GH-induced STAT5 signalling that was overcome with increasing doses of recombinant human GH. RESULTS: Using an in vitro model, we show that elevated levels of GHBP inhibit the action of GH. Furthermore, our studies demonstrate that this inhibition by GHBP can be overcome by increasing doses of recombinant human GH. CONCLUSIONS: To our knowledge, this is the first study to demonstrate in vitro that elevated levels of GHBP attenuate the effect of GH and inhibit GH-induced signalling, thereby leading to short stature. Though this inhibition was overcome in vitro with supraphysiologic doses of GH, significantly above endogenously available GH, it remains to be seen whether such an effect can be replicated in vivo.


Assuntos
Hormônio do Crescimento Humano , Receptores da Somatotropina , Proteínas de Transporte/genética , Criança , Códon sem Sentido/genética , Hormônio do Crescimento , Células HEK293 , Hormônio do Crescimento Humano/genética , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Receptores da Somatotropina/genética
3.
World J Cardiol ; 10(9): 97-109, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30344957

RESUMO

AIM: To investigate the hypothesis that cardiomyocyte-specific loss of the electrogenic NBCe1 Na+-HCO3 - cotransporter is cardioprotective during in vivo ischemia-reperfusion (IR) injury. METHODS: An NBCe1 (Slc4a4 gene) conditional knockout mouse (KO) model was prepared by gene targeting. Cardiovascular performance of wildtype (WT) and cardiac-specific NBCe1 KO mice was analyzed by intraventricular pressure measurements, and changes in cardiac gene expression were determined by RNA Seq analysis. Response to in vivo IR injury was analyzed after 30 min occlusion of the left anterior descending artery followed by 3 h of reperfusion. RESULTS: Loss of NBCe1 in cardiac myocytes did not impair cardiac contractility or relaxation under basal conditions or in response to ß-adrenergic stimulation, and caused only limited changes in gene expression patterns, such as those for electrical excitability. However, following ischemia and reperfusion, KO heart sections exhibited significantly fewer apoptotic nuclei than WT sections. CONCLUSION: These studies indicate that cardiac-specific loss of NBCe1 does not impair cardiovascular performance, causes only minimal changes in gene expression patterns, and protects against IR injury in vivo .

4.
J Endocr Soc ; 1(4): 345-358, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188236

RESUMO

CONTEXT: Autosomal-recessive mutations in the growth hormone receptor (GHR) are the most common causes for primary growth hormone insensitivity (GHI) syndrome with classical GHI phenotypically characterized by severe short stature and marked insulin-like growth factor (IGF)-I deficiency. We report three families with dominant-negative heterozygous mutations in the intracellular domain of the GHR causing a nonclassical GHI phenotype. OBJECTIVE: To determine if the identified GHR heterozygous variants exert potential dominant-negative effects and are the cause for the GHI phenotype in our patients. RESULTS: All three mutations (c.964dupG, c.920_921insTCTCAAAGATTACA, and c.945+2T>C) are predicted to result in frameshift and early protein termination. In vitro functional analysis of variants c.964dupG and c.920_921insTCTCAAAGATTACA (c.920_921ins14) suggests that these variants are expressed as truncated proteins and, when coexpressed with wild-type GHR, mimicking the heterozygous state in our patients, exert dominant-negative effects. Additionally, we provide evidence that a combination therapy of recombinant human growth hormone (rhGH) and rhIGF-I improved linear growth to within normal range for one of our previously reported patients with a characterized, dominant-negative GHR (c.899dupC) mutation. CONCLUSION: Dominant-negative GHR mutations are causal of the mild GHI with substantial growth failure observed in our patients. Heterozygous defects in the intracellular domain of GHR should, therefore, be considered in cases of idiopathic short stature and IGF-I deficiency. Combination therapy of rhGH and rhIGF-I improved growth in one of our patients.

5.
Sci Rep ; 7(1): 7264, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779178

RESUMO

Loss of the AE3 Cl-/HCO3- exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO2 disposal, facilitation of Na+-loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O2/CO2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O2, the data suggest that loss of AE3, which has the potential to extrude CO2 in the form of HCO3-, impairs O2/CO2 balance in cardiac myocytes. These results support a model in which the AE3 Cl-/HCO3- exchanger, coupled with parallel Cl- and H+-extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO2.


Assuntos
Antiporters/genética , Antiporters/metabolismo , Dióxido de Carbono/metabolismo , Miocárdio/metabolismo , Análise de Sequência de RNA , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico Ativo , Biologia Computacional/métodos , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Expressão Gênica , Ontologia Genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hipóxia/metabolismo , Masculino , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Sódio/metabolismo , Vasodilatação
6.
World J Gastrointest Pathophysiol ; 7(1): 138-49, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26909237

RESUMO

AIM: To investigate the intestinal functions of the NKCC1 Na(+)-K(+)-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.

7.
World J Biol Chem ; 5(3): 334-45, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25225601

RESUMO

Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H(+), HCO3 (-) is generated from CO2 and H2O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membranes. The functions of HCO3 (-) and HCO3 (-)-transporters in epithelial tissues have been studied extensively, but their functions in heart are less well understood. Here we review studies of the identities and physiological functions of Cl(-)/HCO3 (-) exchangers and Na(+)/HCO3 (-) cotransporters of the SLC4A and SLC26A families in heart. We also present RNA Seq analysis of their cardiac mRNA expression levels. These studies indicate that slc4a3 (AE3) is the major Cl(-)/HCO3 (-) exchanger and plays a protective role in heart failure, and that Slc4a4 (NBCe1) is the major Na(+)/HCO3 (-) cotransporter and affects action potential duration. In addition, previous studies show that HCO3 (-) has a positive inotropic effect in the perfused heart that is largely independent of effects on intracellular Ca(2+). The importance of HCO3 (-) in the regulation of contractility is supported by experiments showing that isolated cardiomyocytes exhibit sharply enhanced contractility, with no change in Ca(2+) transients, when switched from Hepes-buffered to HCO3 (-)- buffered solutions. These studies demonstrate that HCO3 (-) and HCO3 (-)-handling proteins play important roles in the regulation of cardiac function.

8.
J Mol Cell Cardiol ; 65: 33-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080184

RESUMO

Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo , Animais , Transporte Biológico , Glicemia/metabolismo , Cálcio/metabolismo , Cardiotônicos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dieta Hiperlipídica , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sódio/metabolismo , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...